Indifference curve

In microeconomic theory, an indifference curve is a graph showing different bundles of goods between which a consumer is indifferent. That is, at each point on the curve, the consumer has no preference for one bundle over another. One can equivalently refer to each point on the indifference curve as rendering the same level of utility (satisfaction) for the consumer. Utility is then a device to represent preferences rather than something from which preferences come.[1] The main use of indifference curves is in the representation of potentially observable demand patterns for individual consumers over commodity bundles.[2]

There are infinitely many indifference curves: one passes through each combination. A collection of (selected) indifference curves, illustrated graphically, is referred to as an indifference map.

Contents

History

The theory of indifference curves was developed by Francis Ysidro Edgeworth, Vilfredo Pareto and others in the first part of the 20th century. The theory can be derived from ordinal utility theory, which posits that individuals can always rank any consumption bundles by order of preference.

Map and properties of indifference curves

A graph of indifference curves for an individual consumer associated with different utility levels is called an indifference map. Points yielding different utility levels are each associated with distinct indifference curves and is like a contour line on a topographical map. Each point on the curve represents the same elevation. If you move "off" an indifference curve traveling in a northeast direction (assuming positive marginal utility for the goods) you are essentially climbing a mound of utility. The higher you go the greater the level of utility. The non-satiation requirement means that you will never reach the "top", or a "bliss point", a consumption bundle that is preferred to all others

Indifference curves are typically represented to be:

  1. Defined only in the non-negative quadrant of commodity quantities (i.e. the possibility of having negative quantities of any good is ignored).
  2. Negatively sloped. That is, as quantity consumed of one good (X) increases, total satisfaction would increase if not offset by a decrease in the quantity consumed of the other good (Y). Equivalently, satiation, such that more of either good (or both) is equally preferred to no increase, is excluded. (If utility U = f(x, y), U, in the third dimension, does not have a local maximum for any x and y values.) The negative slope of the indifference curve reflects the law of diminishing marginal utility. That is as more of a good is consumed total utility increases at a decreasing rate - additions to utility per unit consumption are successively smaller. Thus as you move down the indifference curve you are trading consumption of units of Y for additional units of X.
  3. Complete, such that all points on an indifference curve are ranked equally preferred and ranked either more or less preferred than every other point not on the curve. So, with (2), no two curves can intersect (otherwise non-satiation would be violated).
  4. Transitive with respect to points on distinct indifference curves. That is, if each point on I2 is (strictly) preferred to each point on I1, and each point on I3 is preferred to each point on I2, each point on I3 is preferred to each point on I1. A negative slope and transitivity exclude indifference curves crossing, since straight lines from the origin on both sides of where they crossed would give opposite and intransitive preference rankings.
  5. (Strictly) convex. With (2), convex preferences imply that the indifference curves cannot be concave to the origin, i.e. they will either be straight lines or bulge toward the origin of the indifference curve. If the latter is the case, then as a consumer decreases consumption of one good in successive units, successively larger doses of the other good are required to keep satisfaction unchanged[substitution effect].

Assumptions of consumer preference theory

Application

Consumer theory uses indifference curves and budget constraints to generate consumer demand curves. For a single consumer, this is a relatively simple process. First, let one good be an example market e.g. carrots, and let the other be a composite of all other goods. Budget constraints gives a straight line on the indifference map showing all the possible distributions between the two goods; the point of maximum utility is then the point at which an indifference curve is tangent to the budget line (illustrated). This follows from common sense: if the market values a good more than the household, the household will sell it; if the market values a good less than the household, the household will buy it. The process then continues until the market's and household's marginal rates of substitution are equal.[6] Now, if the price of carrots were to change, and the price of all other goods were to remain constant, the gradient of the budget line would also change, leading to a different point of tangency and a different quantity demanded. These price / quantity combinations can then be used to deduce a full demand curve.[6] A line connecting all points of tangency between the indifference curve and the budget constraint is called the expansion path.[7]

Examples of indifference curves

In Figure 1, the consumer would rather be on I3 than I2, and would rather be on I2 than I1, but does not care where he/she is on a given indifference curve. The slope of an indifference curve (in absolute value), known by economists as the marginal rate of substitution, shows the rate at which consumers are willing to give up one good in exchange for more of the other good. For most goods the marginal rate of substitution is not constant so their indifference curves are curved. The curves are convex to the origin, describing the negative substitution effect. As price rises for a fixed money income, the consumer seeks less the expensive substitute at a lower indifference curve. The substitution effect is reinforced through the income effect of lower real income (Beattie-LaFrance). An example of a utility function that generates indifference curves of this kind is the Cobb-Douglas function \scriptstyle U\left(x,y\right)=x^\alpha y^{1-\alpha }, 0 \leq \alpha \leq 1. The negative slope of the indifference curve incorporates the willingness of the consumer to make trade offs.[8]

If two goods are perfect substitutes then the indifference curves will have a constant slope since the consumer would be willing to switch between at a fixed ratio. The marginal rate of substitution between perfect substitutes is likewise constant. An example of a utility function that is associated with indifference curves like these would be \scriptstyle U\left(x,y\right)=\alpha x %2B \beta y.

If two goods are perfect complements then the indifference curves will be L-shaped. Examples of perfect complements include left shoes compared to right shoes: the consumer is no better off having several right shoes if she has only one left shoe - additional right shoes have zero marginal utility without more left shoes, so bundles of goods differing only in the number of right shoes they includes - however many - are equally preferred. The marginal rate of substitution is either zero or infinite. An example of the type of utility function that has an indifference map like that above is \scriptstyle U\left(x,y\right)= \min \{ \alpha x, \beta y \}.

The different shapes of the curves imply different responses to a change in price as shown from demand analysis in consumer theory. The results will only be stated here. A price-budget-line change that kept a consumer in equilibrium on the same indifference curve:

in Fig. 1 would reduce quantity demanded of a good smoothly as price rose relatively for that good.
in Fig. 2 would have either no effect on quantity demanded of either good (at one end of the budget constraint) or would change quantity demanded from one end of the budget constraint to the other.
in Fig. 3 would have no effect on equilibrium quantities demanded, since the budget line would rotate around the corner of the indifference curve.[nb 2]

Preference relations and utility

Choice theory formally represents consumers by a preference relation, and use this representation to derive indifference curves showing combinations of equal preference to the consumer.

Preference relations

Let

A\; = a set of mutually exclusive alternatives among which a consumer can choose
a\; and b\; = generic elements of A\;.

In the language of the example above, the set A\; is made of combinations of apples and bananas. The symbol a\; is one such combination, such as 1 apple and 4 bananas and b\; is another combination such as 2 apples and 2 bananas.

A preference relation, denoted \succeq, is a binary relation define on the set A\;.

The statement

a\succeq b\;

is described as 'a\; is weakly preferred to b\;.' That is, a\; is at least as good as b\; (in preference satisfaction).

The statement

a\sim b\;

is described as 'a\; is weakly preferred to b\;, and b\; is weakly preferred to a\;.' That is, one is indifferent to the choice of a\; or b\;, meaning not that they are unwanted but that they are equally good in satisfying preferences.

The statement

a\succ b\;

is described as 'a\; is weakly preferred to b\;, but b\; is not weakly preferred to a\;.' One says that 'a\; is strictly preferred to b\;.'

The preference relation \succeq is complete if all pairs a,b\; can be ranked. The relation is a transitive relation if whenever a\succeq b\; and b\succeq c,\; then a\succeq c\;.

Consider a particular element of the set A\;, such as a_0\;. Suppose one builds the list of all other elements of A\; which are indifferent, in the eyes of the consumer, to a_0\;. Denote the first element in this list by a_1\;, the second by a_2\; and so on... The set \{a_i:i\geq 0\} forms an indifference curve since a_i\sim a_j\; for all i,j\geq 0\;.

Formal link to utility theory

In the example above, an element a\; of the set A\; is made of two numbers: The number of apples, call it x,\; and the number of bananas, call it y.\;

In utility theory, the utility function of an agent is a function that ranks all pairs of consumption bundles by order of preference (completeness) such that any set of three or more bundles forms a transitive relation. This means that for each bundle \left(x,y\right) there is a unique relation, U\left(x,y\right), representing the utility (satisfaction) relation associated with \left(x,y\right). The relation \left(x,y\right)\to U\left(x,y\right) is called the utility function. The range of the function is a set of real numbers. The actual values of the function have no importance. Only the ranking of those values has content for the theory. More precisely, if U(x,y)\geq U(x',y'), then the bundle \left(x,y\right) is described as at least as good as the bundle \left(x',y'\right). If U\left(x,y\right)>U\left(x',y'\right), the bundle \left(x,y\right) is described as strictly preferred to the bundle \left(x',y'\right).

Consider a particular bundle \left(x_0,y_0\right) and take the total derivative of U\left(x,y\right) about this point:

dU\left(x_0,y_0\right)=U_1\left(x_0,y_0\right)dx%2BU_2\left(x_0,y_0\right)dy or, without loss of generality,
\frac{dU\left(x_0,y_0\right)}{dx}= U_1(x_0,y_0).1%2B U_2(x_0,y_0)\frac{dy}{dx} (Eq. 1)

where U_1\left(x,y\right) is the partial derivative of U\left(x,y\right) with respect to its first argument, evaluated at \left(x,y\right). (Likewise for U_2\left(x,y\right).)

The indifference curve through \left(x_0,y_0\right) must deliver at each bundle on the curve the same utility level as bundle \left(x_0,y_0\right). That is, when preferences are represented by a utility function, the indifference curves are the level curves of the utility function. Therefore, if one is to change the quantity of x\, by dx\,, without moving off the indifference curve, one must also change the quantity of y\, by an amount dy\, such that, in the end, there is no change in U:

\frac{dU\left(x_0,y_0\right)}{dx}= 0, or, substituting 0 into (Eq. 1) above to solve for dy/dx:
\frac{dU\left(x_0,y_0\right)}{dx} = 0\Leftrightarrow\frac{dy}{dx}=-\frac{U_1(x_0,y_0)}{U_2(x_0,y_0)}.

Thus, the ratio of marginal utilities gives the absolute value of the slope of the indifference curve at point \left(x_0,y_0\right). This ratio is called the marginal rate of substitution between x\, and y\,.

Examples

Linear utility

If the utility function is of the form U\left(x,y\right)=\alpha x%2B\beta y then the marginal utility of x\, is U_1\left(x,y\right)=\alpha and the marginal utility of y\, is U_2\left(x,y\right)=\beta. The slope of the indifference curve is, therefore,

\frac{dx}{dy}=-\frac{\beta}{\alpha}.

Observe that the slope does not depend on x\, or y\,: the indifference curves are straight lines.

Cobb-Douglas utility

If the utility function is of the form U\left(x,y\right)=x^\alpha y^{1-\alpha} the marginal utility of x\, is U_1\left(x,y\right)=\alpha \left(x/y\right)^{\alpha-1} and the marginal utility of y\, is U_2\left(x,y\right)=(1-\alpha) \left(x/y\right)^{\alpha}.Where \alpha<1. The slope of the indifference curve, and therefore the negative of the marginal rate of substitution, is then

\frac{dx}{dy}=-\frac{1-\alpha}{\alpha}\left(\frac{x}{y}\right).

CES utility

A general CES (Constant Elasticity of Substitution) form is

U(x,y)=\left(\alpha x^\rho %2B(1-\alpha)y^\rho\right)^{1/\rho}

where \alpha\in(0,1) and \rho\leq 1. (The Cobb-Douglas is a special case of the CES utility, with \rho=0\,.) The marginal utilities are given by

U_1(x,y)=\alpha \left(\alpha x^\rho %2B(1-\alpha)y^\rho\right)^{\left(1/\rho\right)-1} x^{\rho-1}

and

U_2(x,y)=(1-\alpha)\left(\alpha x^\rho %2B(1-\alpha)y^\rho\right)^{\left(1/\rho\right)-1} y^{\rho-1}.

Therefore, along an indifference curve,

\frac{dx}{dy}=-\frac{1-\alpha}{\alpha}\left(\frac{x}{y}\right)^{1-\rho}.

These examples might be useful for modelling individual or aggregate demand.

Biology

As used in Biology, the indifference curve is a model for how animals 'decide' whether to perform a particular behavior, based on changes in two variables which can increase in intensity, one along the x-axis and the other along the y-axis. For example, the x-axis may measure the quantity of food available while the y-axis measures the risk involved in obtaining it. The indifference curve is drawn to predict the animal's behavior at various levels of risk and food availability.

See also

Footnotes

  1. ^ The transitivity of weak preferences is sufficient for most IC analysis: If A is weakly preferred to B meaning that the consumer likes A at least as much as B and B is weakly preferred to C then A is weakly preferred to C.[4]
  2. ^ Indifference curves can be used to derive the individual demand curve. However, the assumptions of consumer preference theory do not guarantee that the demand curve will have a negative slope.[9]

Notes

  1. ^ Geanakoplis (1987), p. 117.
  2. ^ Böhm and Haller (1987), p. 785.
  3. ^ a b c d e f g Binger and Hoffman (1998). pp. 109-17.
  4. ^ a b Perloff (2008). p. 62.
  5. ^ a b Silberberg and Suen (2000).
  6. ^ a b Lipsey (1975). pp. 182-186.
  7. ^ Salvatore, Dominick (1989). Schaum's outline of theory and problems of managerial economics, McGraw-Hill, ISBN 9780070545137
  8. ^ Id.
  9. ^ Binger and Hoffman (1998). p. 141-43.

References

External links